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Note on the Interfaeial Tension 
of Phase-Separated Polymer Solutions 
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Earlier theoretical calculations of the interfacial tension cr of phase-separated 
polymer solutions as a function of the degree of polymerization N and the 
temperature T, based partly on the mean-field approximation, had led to 
a ~ N  1/4(1- T/Tc) 3/2 for fixed N>> 1 and T approaching the critical solution 
temperature Tc. It is here remarked that the scaling procedure of de Gennes 
then modifies this to cr ~ N-~ T / T J  -26, which is in close accord with the 
experimental a~N-~ 1-26. The simplest mean-field picture yields 
a ~ N-v2(1 - T/Tc) 3/2. 

KEY WORDS:  Scaling; surface tension; interfacial tension; critical solution 
point; phase separation; polymer solutions. 

I cons ider  a so lu t ion  of a po lymer  solute of degree of po lymer i za t ion  N in a 
solvent,  separa t ing  into two phases  at  a t empera tu re  T below the cri t ical  
so lu t ion  t empera tu re  Tc (Fig. 1), and  ask how the tens ion o- of the interface 
between coexist ing phases  varies with N and  1 -  T / T c  near  the cri t ical  
point .  Nose  (1~ and  Vrij and  Roebersen  ~2) have found in a mean-f ield 
a p p r o x i m a t i o n  

~r ~ N -  v4(1 - TITs )  3/2 

Shinozak i  et al. (3) find by exper iment  

a "~ N-~ ~176 - TITs )"  

(1) 

(2) 

with an exponen t  /~ tha t  is essent ial ly the same as the /~ = 1.26 expected 
(and found)  at  any  o rd ina ry  cri t ical  point ,  ~4~ but  with the power  of N 
no t iceab ly  different f rom tha t  in Eq. (1). 
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Fig. 1. Temperature (T)-composition (~b) coexistence curve for phase equilibrium in 
solutions of a polymer solute of volume fraction ~b in a solvent of volume fraction 1 - ~b. The 
critical solution point is at To, Oc, marked with a dot. Some tie lines are shown in the two- 
phase region. 

Shinozaki et  al. (3'5'6) note that near the critical point the interracial ten- 
sion a should also be related to the correlation length ~ ... .  of composition 
fluctuations by (4) 

O" = AkTc/~2orr  (3 )  

with some universal (7'8) (in particular, N-independent), dimensionless con- 
stant of proportionality A in addition to the Boltzmann constant k. They 
remark that to within the precision of the measurements of a, ~ ... . .  and To, 

kTcfiT~ . . . .  at the Eq. (3) agrees with experiment, with a limiting value of 2 
critical point that is indeed the same, within experimental error, as the 
apparently universal value for this quantity that is found at the critical 
points of ordinary, nonpolymeric fluids and liquid mixtures. Moldover 
et  aL (9'1~ concur. Shinozaki et  al. (3'5'6) also remark that (3) compares well 
with (2) if in (3) one uses for the correlation length 

. . . .  = aN(1 ~)/2 l1 - T/Tcl  - "  (4) 

with a a microscopic length and v the conventional critical point exponent 
for divergence of ~ ... .  ; they note that (4) follows from de Gennes'  scaling 
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formula (ref. 11; ref. 12, p. 213). Thus, with v =0.63, as known from theory 
and experiment, (3) and (4) imply 

0" ~ N - ~  - -  T/Tc) 1"26 (5) 

in reasonable agreement with (2). 
We may now note that a scaling procedure of de Gennes (ref. 12, 

p. 121) converts (1) directly into (5). We first rewrite (1) as 

a ~ N 1 [ N 1 / 2 ( 1  - -  T/Te)]  3/2 (6) 

and then remark that N1/2(1- T/Tc) is the scaling variable in the classical 
(mean-field) theory (ref. 13, p. 509; ref. 12, p. 73). Thus, an immediate 
correction to the mean-field theory is obtained by altering (6) to 

a N N  1[N' /2(1-  T/Tc)] ~' (7) 

with # the correct nonclassical surface tension exponent. This is 

r; ~ U - 1  + " / 2 ( 1  - -  T/Tc) ~ (8) 

which, with # =  1.26, is (5). [This is the same argument that yields de 
Gennes' N 1 / 2 + / v 2 ( 1 -  T/Tc) n for the coexistence curve near the critical 
point (ref. 12, p. 121), starting from the classical N-1/4(1 - T/T<)I/2.] 

Another view of (5) or (8) is obtained by noting that there are two 
alternative routes to the surface tension near a critical point. One may 
understand (s) the formula (1) as arising from 

a = h0 ~intr (9) 

where h 0 is the excess free-energy density in the interface due to its 
inhomogeneity and ~interf is the interfacial thickness. In Flory theory the 
free-energy density (free energy of mixing of polymer and solvent, per unit 
volume) f ,  as a function of the volume fraction ~b of polymer, is given by 

a3f/kT=(!/N)(JlnqD+(1-qD)ln(1-gg)+ Zqk(1-qb) (10) 

where a is again a microscopic length (the cell size in an underlying lattice 
model, for example) and X is Flory's interaction parameter 

Z=O/2T (11) 

with 0 the theta-temperature, a constant (independent of N) characteristic 
of the polymer and the solvent (ref. 13, pp. 523, 545, 601). The corn- 
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Fig, 2. 

f 

The common-tangent construction applied to the Flory free energy (10), yielding the 
polymer volume fractions ~b' and ~b" in the coexisting phases. 

positions ~b' and ~b" of coexisting phases are found from (10) by the 
common- tangen t  construction,  illustrated in Fig. 2. Let us call the height of 
f above its double- tangent  line h(~b); it is shown in Fig. 3. Near  the critical 
point  its max imum value, h . . . .  is such that  

a3hmax/kTc=(3/4) N-m(1-T/Tc)  2 (T~Tc,  fixedN>l) (12) 

In mean-field theories of interracial structure and tension it is found that 
the nonlocal  (i.e., the square-gradient  or more  general nonlocaMntegral)  
contr ibut ions to the free energy of inhomogenei ty,  and the local con- 
t r ibut ion from h(~b), are equal (ref. 4, chaps. 3 and 5). Thus, the ho required 

Fig. 3. 

/ \ 
i J  \ 

4, 

Height of f above the double-tangent line in Fig. 2 as a function of the polymer 
volume fraction ~b. 
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in (9) may be taken to have the same N and 1 - T/Tc dependence as hma x 

in (12): 
ho ~ hmax (13) 

with some N-independent proportionality constant. If we also suppose 
that (a) 

~ i n t e r f  ~ '  ~ . . . .  (14) 

with an N-independent proportionality constant, then Eqs. (4), (9), and 
(12)-(14), with the classical (mean-field) v =�89 in (4), yield (1). Although 
the original derivations (t'2~ of (1) were different in form, this was their 
physical content. 

The classical ho..~N-1/2(1- T/Tc) 2 from (12) and (13) may now be 
extended by the same scaling argument that converted (1) into (5). We first 
rewrite it as ho~N-3/2[N~/2(1-T/Tc)]  2 and then generalize it to 
ho~N-3/2[N1/2(1-  T/T~)] 2-~', where e, in conventional notation, is the 
index of divergence of a heat capacity. Then (4), (9), and (14), with this 

�9 1 
generalized, non-classical h0, yield a~N-~(~+~(1- -T/Tc)  2 . . . .  . This, by 
the known scaling law (a) # +  v = 2 - ~ ,  is then (8). 

The second route to (5) or (8) is via (3), which more generally is (a) 

a~2o~r  a-~) in a space of dimensionality d. With (4), this gives 
a ~ N  ~(d-~)(1-~)(1-T/Tr (d-~)~. From the known scaling law (4) 

= ( d - 1  )v this is a ~ N -}(d- ~) +, /2(1-  T / T y ,  which, with d =  3, is again 
(8). 

Note that (8), as just obtained from (3), is found only when d = 3 ,  
whereas when it was obtained by the alternative route via (4), (9), and (14) 
it was found for any d. That suggests that (4) and (8) may be highly 
accurate, if not exact, in d = 3, but not for other d. The same may be said of 
the scaling arguments by which we have extended the N and 1 -  T/T~ 
dependences in mean-field formulas into the corresponding nonclassical 
dependences. The formula (4) may itself be viewed as such an extension 
of its classical (v=�89 version: ~ . . . .  ~ N  1/4 f l-T/Z~1-1/2, which is first 
rewritten as r . . . .  ~Na/21N1/2(1--T/T~)I -~/2 and then generalized to 

. . . .  ~ N1/2 INm(l  - T/Tc)] 
The theories of Nose (~) and of Vrij and Roebersen, (2) while in some 

respects mean-field theories, go beyond the simplest mean-field theory by 
allowing the spatial variation of the density of polymer-chain centers to 
differ from that of the density of monomeric segments. That allows the sizes 
and shapes of the polymer coils to vary through the interface, which can be 
important. (~) It is nevertheless of some interest to see what the implications 
are of the even simpler (though probably less accurate) mean-field theory 
in which the density of monomeric segments is the only order parameter. 
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In the Flory theory, Eq. (10), the energetic contribution to the free- 
energy density f is that of interacting but unconnected segments; that the 
segments are in reality connected in chains of N segments each is 
manifested only in the entropic contribution to f ,  in the factor 1IN that 
multiplies % In ~b. At the same time, in the van der Waals theory of the 
interracial composition profile, only the energetic component of the free- 
energy density is non-local; the entropic component is entirely local (ref. 4, 
chaps. 3 and 5). Together, these imply that (in this simplest mean-field 
approximation) the non-local contribution to the free-energy density is 
independent of N. Then the functional equation for the composition profile 
~b(z), with za the distance in the direction perpendicular to the interface, is 
just (ref. 4, chaps. 3 and 5) 

2(c'/c) zdZO(z) = {#[~b(z)] - #o}/kT (lS) 

where one imagines an underlying lattice with planes at za, parallel to the 
interface, for, say, integer z; where c' is the vertical coordination number of 
the lattice (c '=  1 for a simple-cubic lattice) and c the total coordination 
number (c = 6 for simple cubic); where d 2 is the second-difference operator, 
AZ~b(z) = ~b(z + 1) - 2~b(z) + %(z - 1); and where 

#(~b) = a 3 Of(O)/~O, #o = #(~b') = #(~b ") (16) 

The coefficient 2(c'/c)z of the non-local d2~b is independent of N and is just 
that of a solution of unconnected segments, in agreement with the fore- 
going discussion; the N-dependence that arises from the chain connected- 
ness is entirely in the local/~(~b)-/~o- This is the essential difference from 
the earlier, presumably more accurate, treatments. (1'2'a4) 

As N ~ oe for fixed Z > �89 (thus, for now, not too close to the critical 
point), the polymer volume fraction ~b" in the more concentrated phase, as 
calculated from (10) and the construction in Fig. 2, is the unique solution 
0 < ~b" < 1 of 

0 -- ln(1 - ~b") + ~b"+ z~b "2 (17) 

asymptotically independent of N; while the polymer volume fraction ~b' in 
the more dilute phase is exponentially small, 

~b'= ~b" exp{ - N [ ( 1  - 2Ab" ) ln(1 - ~b") - 2] }. (18) 

This manifests itself in an extreme asymmetry of the profile. As qt(z)-~ ~b" 
or ~b' in the bulk phases (z ~ +_o e), its deviation from its asymptote is 
exponential in z with decay length 

a -  l~i,te~f = [(c/2e'zkT) 0#/c~b ] -1/2 (19) 
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in which ~3g/~b is to be evaluated at ~b = ~b" or at ~b = ~b', respectively. From 
(10) and (16) (t9) it follows that, at some distance from the critical point, 
the interface would have a diffuseness of order a on the ~b" (more concen- 
trated) side, but would be essentially infinitely sharp [-thickness of order 
a e x p ( - N ) ]  on the ~b' (more dilute) side. Such an asymmetry away from 
the critical point was remarked also by Nose. ~1) It is illustrated 
schematically in Fig. 4. 

In the opposite limit, in which T ~  Tc at fixed N>> 1, we obtain the 
characteristic critical behavior. Now ~b'~ ~b" and the profile ~b(z) becomes 
symmetric: the exponential decay length is still given by (19), but the factor 
O#/d~b, which is to be evaluated at ~b = q~' and at ~b = ~b" on the two sides, 
takes on asymptotically equal values (vanishing as T ~ T c ) .  For the 
characteristic critical behavior to be seen, T must be within some 6 T  of Tc, 
where in mean-field approximation 6 T / T  c ~ 1/x/-N; i.e., the width in tem- 
perature of what we may call the critical region, where ~b' and ~b", say, 
instead of satisfying (17) and (18), are comparable (both approximately 
1/x/-N, in mean-field approximation), decreases with increasing N. That 
means that the determination of the critical behavior of a by experiment, as 
in (2), requires that measurements be made at temperatures all the closer 
to T c the larger N is. That puts a limit on how large N can be allowed to be 
in practice, as Shinozaki et al. ~3) have observed. 

We find from (10), (11), (16), and (19) that in this critical regime, 

~interf "~ a(1 -- T/Tc)  -1/2 ( T ~  To, fixed N>> i) (20) 

asymptotically independent of N. This differs from (4) and (14), which, 

  qb" 

Z 

Fig. 4. Interfacial composition profile ~b(z) at some distance from the critical point, showing 
great asymmetry: in the simplest mean-field theory the interface has a thickness of order a on 
the q~" (more concentrated) side but is essentially infinitely sharp on the ~b' (more dilute) side. 
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with the classical v = �89 give ~inter r~  N1/4 (1  - -  T/Tc)  -1/2. Now from (9), (12), 
(13), and (20), 

a N N  2/2(1-- TITs) 3/2 (21) 

as the simplest mean-field result, instead of (1). 
Equation (21) is a special case of the result previously derived by 

Sanchez ~15) in his treatment of the interfacial properties of polymer blends; 
it is obtained from his more general formula when one of the polymers of 
the blend becomes a monomeric solvent. Sanchez also found that the inter- 
facial thickness is independent of N at fixed 1 - T/Tc, as in (20). 

The N dependence in (21) is in better accord with that in the 
experimental (2) than is that in (1). It does not do as well, however, when 
extended into a nonclassical formula by the usual scaling argument, first 
rewriting it as a,,~N-5/4[N1/2(1- T/Tc)] 3/2 and then generalizing it to 
a~N-5 /4[N1/2 (1 -  T/Tc)] ~. With # =  1.26, the resulting power of N is 
-0.62, to be compared with the experimental -0 .44 _+ 0.03 in (2) and with 
the theoretical -0 .37 from (8). 

This mean-field theory, though, has the advantage of being very 
simple. It allows one to analyze the dependence of a on the scaling variable 
x = N m ( 1 -  T/Tc) for all values of x, both large and small, in the scaling 
regime N-~ ~ ,  1 -  T/Tc ~ O, which could be the prototype of such an 
analysis in a more sophisticated theory. Such a study of the variation of 
with x through the whole scaling regime in this simplest mean-field theory 
is the subject of a sequel to this article. (~6) 
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